First commit, aggregated repos

This commit is contained in:
2025-10-05 22:53:40 -04:00
commit fd496edee5
14 changed files with 467800 additions and 0 deletions

176
.gitignore vendored Normal file
View File

@@ -0,0 +1,176 @@
# ---> Python
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# UV
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
#uv.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
.pdm.toml
.pdm-python
.pdm-build/
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
# Ruff stuff:
.ruff_cache/
# PyPI configuration file
.pypirc

27
Cryptography/README.md Normal file
View File

@@ -0,0 +1,27 @@
# CS327-Cryptography
Nicholas Tamassia
February 27, 2025
CS-327
Cryptography PA
**Program Location:** `/cs/home/stu/tamassno/cs327/cryptography_PA/affine.py`
**Usage:** `python affine.py [encrypt | decrypt | decipher] --help`
## Questions
### 7.1 Part 1
$D(c,a,b)=a^{-1}(c-b)\;\text{mod}\;128$
### 7.1 Part 2
Restrictions on $a$ and $b$:
1. $0 < a < 128$, $a$ and $128$ must be coprime, i.e. $\text{gcd}(128,a)=1$
2. $0 \leq b < 128$
### 7.1 Part 3
Because 128 is coprime with all odd numbers less than itself (1, 3, 5, …, 127), there are 64 possible values for a. There are 128 options for b so there exists an upper limit on valid $a$, $b$
pairs of 8192.

178
Cryptography/affine.py Normal file
View File

@@ -0,0 +1,178 @@
from typing import TextIO
import re
from pathlib import Path
import argparse
ASCII_MODULO = 128
def encrypt_string(string: str, a: int, b: int):
def encrypt_char(m): return (a * m + b) % ASCII_MODULO
return ''.join(chr(encrypt_char(ord(char))) for char in string)
def encrypt(plaintext_file: TextIO, output_file: TextIO, a: int, b: int) -> None:
valid_a = a > 0 and a < ASCII_MODULO and egcd(ASCII_MODULO, a)[0] == 1
valid_b = b >= 0 and b < ASCII_MODULO
if (not (valid_a and valid_b)):
print(f"The key pair ({a}, {b}) is invalid, please select another key")
return
plaintext_characters: str = ''.join(plaintext_file.readlines())
output_file.write(encrypt_string(plaintext_characters, a, b))
def decrypt_string(string: str, inverse_a: int, b: int) -> str:
def decrypt_char(m): return (inverse_a * (m - b)) % ASCII_MODULO
return ''.join(chr(decrypt_char(ord(char))) for char in string)
def decrypt(ciphertext_file: TextIO, output_file: TextIO, a: int, b: int) -> None:
valid_a = a > 0 and a < ASCII_MODULO and egcd(ASCII_MODULO, a)[0] == 1
valid_b = b >= 0 and b < ASCII_MODULO
if not (valid_a and valid_b):
print(f"The key pair ({a}, {b}) is invalid, please select another key")
return
inverse_a = modular_inverse(a, ASCII_MODULO)
ciphered_text: str = ''.join(ciphertext_file.readlines())
output_file.write(decrypt_string(ciphered_text, inverse_a, b))
def decipher(ciphertext_file: TextIO, output_file: TextIO, dictionary_file: TextIO) -> None:
dictionary = set(word.strip().lower()
for word in dictionary_file.readlines())
ciphered_text: str = ''.join(ciphertext_file.readlines())
best_word_count = -1
best_a = -1
best_b = -1
for a in range(1, ASCII_MODULO, 2):
inverse_a = modular_inverse(a, ASCII_MODULO)
for b in range(0, ASCII_MODULO):
decrypted_string = decrypt_string(ciphered_text, inverse_a, b)
word_count = count_words(decrypted_string, dictionary)
if word_count > best_word_count:
best_word_count = word_count
best_a = a
best_b = b
best_inverse_a = modular_inverse(best_a, ASCII_MODULO)
deciphered_text = decrypt_string(ciphered_text, best_inverse_a, best_b)
output_file.write(f"{best_a} {best_b}\n")
output_file.write("DECIPHERED MESSAGE:\n")
output_file.write(f"{deciphered_text}")
def count_words(string: str, dictionary: set[str]) -> int:
words: list[str] = re.findall(r'\b\w+\b', string)
return sum(1 * len(word) for word in words if word.strip().lower() in dictionary)
def modular_inverse(a: int, mod: int) -> int:
d, s, _ = egcd(a, mod)
if d != 1:
return -1 # No modular inverse exists
return s % mod # Ensure it's positive
def egcd(a: int, b: int) -> tuple[int, int, int]:
s, t, u, v = 1, 0, 0, 1
while b != 0:
q = a // b
a, b = b, a % b
s, t, u, v = u, v, s - u * q, t - v * q
d = a
return d, s, t
def create_arg_parser():
parser = argparse.ArgumentParser(
description="CLI tool for encryption, decryption, and deciphering.")
subparsers = parser.add_subparsers(dest="command", required=True)
# Encrypt command
encrypt_parser = subparsers.add_parser(
"encrypt", help="Encrypt a plaintext file.")
encrypt_parser.add_argument(
"plaintext_file", help="Path to the plaintext .txt file.")
encrypt_parser.add_argument(
"output_file", help="Path to the output encrypted .txt file.")
encrypt_parser.add_argument(
"a", type=int, help="Parameter a for encryption.")
encrypt_parser.add_argument(
"b", type=int, help="Parameter b for encryption.")
# Decrypt command
decrypt_parser = subparsers.add_parser(
"decrypt", help="Decrypt a ciphertext file.")
decrypt_parser.add_argument(
"ciphertext_file", help="Path to the ciphertext .txt file.")
decrypt_parser.add_argument(
"output_file", help="Path to the output decrypted .txt file.")
decrypt_parser.add_argument(
"a", type=int, help="Parameter a for decryption.")
decrypt_parser.add_argument(
"b", type=int, help="Parameter b for decryption.")
# Decipher command
decipher_parser = subparsers.add_parser(
"decipher", help="Decipher a ciphertext file using a dictionary.")
decipher_parser.add_argument(
"ciphertext_file", help="Path to the ciphertext .txt file.")
decipher_parser.add_argument(
"output_file", help="Path to the output deciphered .txt file.")
decipher_parser.add_argument(
"dictionary_file", help="Path to the dictionary .txt file.")
return parser
def valid_file_path(path: Path) -> bool:
return path.exists() and path.suffix == ".txt"
if __name__ == "__main__":
parser = create_arg_parser()
args = parser.parse_args()
if args.command == "encrypt":
plaintext_file_path = Path(args.plaintext_file).resolve()
output_file_path = Path(args.output_file).resolve()
if valid_file_path(plaintext_file_path) and valid_file_path(output_file_path):
with open(plaintext_file_path, 'r') as plaintext_file, open(output_file_path, 'w') as output_file:
encrypt(plaintext_file, output_file, args.a, args.b)
else:
print("Invalid file path(s), check paths point to .txt files")
parser.print_help()
elif args.command == "decrypt":
ciphertext_file_path = Path(args.ciphertext_file).resolve()
output_file_path = Path(args.output_file).resolve()
if valid_file_path(ciphertext_file_path) and valid_file_path(output_file_path):
with open(ciphertext_file_path, 'r') as ciphertext_file, open(output_file_path, 'w') as output_file:
decrypt(ciphertext_file, output_file, args.a, args.b)
else:
print("Invalid file path(s), check paths point to .txt files")
parser.print_help()
elif args.command == "decipher":
ciphertext_file_path = Path(args.ciphertext_file).resolve()
output_file_path = Path(args.output_file).resolve()
dictionary_file_path = Path(args.dictionary_file).resolve()
if valid_file_path(ciphertext_file_path) and valid_file_path(output_file_path) and valid_file_path(dictionary_file_path):
with open(ciphertext_file_path, 'r') as ciphertext_file, open(output_file_path, 'w') as output_file, open(dictionary_file_path, 'r') as dictionary_file:
decipher(ciphertext_file, output_file, dictionary_file)
else:
print("Invalid file path(s), check paths point to .txt files")
parser.print_help()

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1 @@
bWb\W>bk\W/b/z>bbabWu\brf C Pf >b>zuCb uRz Hb9\>uW\b/WHk]b H buCbb9\zbWb *>HPPC>9

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,349 @@
package evaluator;
import java.io.InputStream;
import java.util.LinkedList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Scanner;
/**
* Simulate a PDA to evaluate a series of postfix expressions provided by a
* lexer. The constructor argument is the lexer of type Lexer. A single line is
* evaluated and its value is printed. Expression values can also be assigned to
* variables for later use. If no variable is explicitly assigned, then the
* default variable "it" is assigned the value of the most recently evaluated
* expression.
*
* @author YOU NAME HERE
*/
public class Evaluator {
/**
* Run the desk calculator.
*/
public static void main(String[] args) {
Evaluator evaluator = new Evaluator(new Lexer(System.in));
evaluator.run();
}
private Lexer lexer; // providing a stream of tokens
private LinkedList<Double> stack; // operands
private HashMap<String, Double> symbols; // symbol table for variables
private String target; // variable assigned the latest expression value
public Evaluator(Lexer lexer) {
this.lexer = lexer;
stack = new LinkedList<>();
symbols = new HashMap<>();
target = "it";
}
/**
* Evaluate a single line of input, which should be a complete expression
* optionally assigned to a variable; if no variable is assigned to, then the
* result is assigned to "it". In any case, return the value of the expression,
* or "no value" if there was some sort of error.
*/
public Double evaluate() {
stack.clear();
target = "it";
int q = 1;
while (q != 4) {
int token = lexer.nextToken();
if (lexer.getText().equals("exit")) {
System.out.println("Bye");
System.exit(0);
}
switch (q) {
case 1:
switch (token) {
case Lexer.NUMBER -> {
stack.push(Double.parseDouble(lexer.getText()));
q = 3;
}
case Lexer.VARIABLE -> {
target = lexer.getText();
stack.push(symbols.getOrDefault(target, 0.0));
q = 2;
}
default -> error("Invald token encountered in state q1");
}
break;
case 2:
switch (token) {
case Lexer.ASSIGN_OP -> {
stack.pop();
q = 3;
}
case Lexer.MINUS_OP -> {
target = "it";
stack.push(-1 * stack.pop());
q = 3;
}
case Lexer.NUMBER -> {
target = "it";
stack.push(Double.parseDouble(lexer.getText()));
q = 3;
}
case Lexer.VARIABLE -> {
target = "it";
stack.push(symbols.getOrDefault(lexer.getText(), 0.0));
q = 3;
}
case Lexer.EOL -> {
target = "it";
symbols.put(target, stack.pop());
q = 4;
}
default -> error("Invald token encountered in state q2");
}
break;
case 3:
switch (token) {
case Lexer.MINUS_OP -> stack.push(-1 * stack.pop());
case Lexer.NUMBER -> stack.push(Double.parseDouble(lexer.getText()));
case Lexer.VARIABLE -> stack.push(symbols.getOrDefault(lexer.getText(), 0.0));
case Lexer.ADD_OP -> {
double a1 = stack.pop();
double a2 = stack.pop();
stack.push(a2 + a1);
}
case Lexer.SUBTRACT_OP -> {
double s1 = stack.pop();
double s2 = stack.pop();
stack.push(s2 - s1);
}
case Lexer.MULTIPLY_OP -> {
double m1 = stack.pop();
double m2 = stack.pop();
stack.push(m2 * m1);
}
case Lexer.DIVIDE_OP -> {
double d1 = stack.pop();
double d2 = stack.pop();
stack.push(d2 / d1);
}
case Lexer.EOL -> {
symbols.put(target, stack.pop());
q = 4;
}
default -> error("Invald token encountered in state q3");
}
break;
}
}
return symbols.get(target);
} // evaluate
/**
* Run evaluate on each line of input and print the result forever.
*/
public void run() {
while (true) {
Double value = evaluate();
if (value == null)
System.out.println("no value");
else
System.out.println(value);
}
}
/**
* Print an error message, display the offending line with the current location
* marked, and flush the lexer in preparation for the next line.
*
* @param msg what to print as an error indication
*/
private void error(String msg) {
System.out.println(msg);
String line = lexer.getCurrentLine();
int index = lexer.getCurrentChar();
System.out.print(line);
for (int i = 1; i < index; i++)
System.out.print(' ');
System.out.println("^");
lexer.flush();
}
////////////////////////////////
///////// Lexer Class //////////
/**
* Read terminal input and convert it to a token type, and also record the text
* of each token. Whitespace is skipped. The input comes from stdin, and each
* line is prompted for.
*/
public static class Lexer {
// language token codes
public static final int ADD_OP = 3;
public static final int SUBTRACT_OP = 4;
public static final int MULTIPLY_OP = 5;
public static final int DIVIDE_OP = 6;
public static final int MINUS_OP = 7;
public static final int ASSIGN_OP = 8;
public static final int EOL = 9;
public static final int NUMBER = 11;
public static final int VARIABLE = 12;
public static final int BAD_TOKEN = 100;
private Scanner input; // for reading lines from stdin
private String line; // next input line
private int index; // current character in this line
private String text; // text of the current token
public Lexer(InputStream in) {
input = new Scanner(in);
line = "";
index = 0;
text = "";
}
/**
* Fetch the next character from the terminal. If the current line is exhausted,
* then prompt the user and wait for input. If end-of-file occurs, then exit the
* program.
*/
private char nextChar() {
if (index == line.length()) {
System.out.print(">> ");
if (input.hasNextLine()) {
line = input.nextLine() + "\n";
index = 0;
} else {
System.out.println("\nBye");
System.exit(0);
}
}
char ch = line.charAt(index);
index++;
return ch;
}
/**
* Put the last character back on the input line.
*/
private void unread() {
index -= 1;
}
/**
* Return the next token from the terminal.
*/
public int nextToken() {
StringBuffer sb = new StringBuffer();
char t;
int q = 0;
while (true) {
t = nextChar();
switch (q) {
case 0 -> {
if (Character.isWhitespace(t) && t != '\n') {
continue;
}
sb.append(t);
if (Character.isDigit(t)) {
q = 1;
continue;
}
if (Character.isLetter(t)) {
q = 2;
continue;
}
text = sb.toString();
return switch (t) {
case '+' -> ADD_OP;
case '-' -> SUBTRACT_OP;
case '*' -> MULTIPLY_OP;
case '/' -> DIVIDE_OP;
case '~' -> MINUS_OP;
case '=' -> ASSIGN_OP;
case '\n' -> EOL;
default -> BAD_TOKEN;
};
}
case 1 -> {
if (Character.isDigit(t)) {
sb.append(t);
continue;
} else if (t == '.') {
sb.append(t);
q = 10;
continue;
} else {
unread();
text = sb.toString();
return NUMBER;
}
}
case 2 -> {
if (Character.isLetterOrDigit(t)) {
sb.append(t);
continue;
} else {
unread();
text = sb.toString();
return VARIABLE;
}
}
case 10 -> {
if (Character.isDigit(t)) {
sb.append(t);
continue;
} else {
unread();
text = sb.toString();
return NUMBER;
}
}
}
}
} // nextToken
/**
* Return the current line for error messages.
*/
public String getCurrentLine() {
return line;
}
/**
* Return the current character index for error messages.
*/
public int getCurrentChar() {
return index;
}
/**
* /** Return the text of the current token.
*/
public String getText() {
return text;
}
/**
* Clear the current line after an error
*/
public void flush() {
index = line.length();
}
} // Lexer
} // Evaluator

View File

@@ -0,0 +1,140 @@
package evaluator;
import static org.junit.jupiter.api.Assertions.*;
import java.io.ByteArrayInputStream;
import java.io.InputStream;
import java.nio.charset.StandardCharsets;
import org.junit.jupiter.api.Test;
import evaluator.Evaluator.Lexer;
class EvaluatorTest {
@Test
void lexerGoodInputTest() {
InputStream input = new ByteArrayInputStream("x1x = 10.34 10 +\n".getBytes(StandardCharsets.UTF_8));
Lexer lexer = new Lexer(input);
assertEquals(Lexer.VARIABLE, lexer.nextToken());
assertEquals("x1x", lexer.getText());
assertEquals(Lexer.ASSIGN_OP, lexer.nextToken());
assertEquals("=", lexer.getText());
assertEquals(Lexer.NUMBER, lexer.nextToken());
assertEquals("10.34", lexer.getText());
assertEquals(Lexer.NUMBER, lexer.nextToken());
assertEquals("10", lexer.getText());
assertEquals(Lexer.ADD_OP, lexer.nextToken());
assertEquals("+", lexer.getText());
assertEquals(Lexer.EOL, lexer.nextToken());
assertEquals("\n", lexer.getText());
}
@Test
void lexerBadInputTest() {
InputStream input = new ByteArrayInputStream("y,!g != 34.67 16! ".getBytes(StandardCharsets.UTF_8));
Lexer lexer = new Lexer(input);
assertEquals(Lexer.VARIABLE, lexer.nextToken());
assertEquals("y", lexer.getText());
assertEquals(Lexer.BAD_TOKEN, lexer.nextToken());
assertEquals(",", lexer.getText());
assertEquals(Lexer.BAD_TOKEN, lexer.nextToken());
assertEquals("!", lexer.getText());
assertEquals(Lexer.VARIABLE, lexer.nextToken());
assertEquals("g", lexer.getText());
assertEquals(Lexer.BAD_TOKEN, lexer.nextToken());
assertEquals("!", lexer.getText());
assertEquals(Lexer.ASSIGN_OP, lexer.nextToken());
assertEquals("=", lexer.getText());
assertEquals(Lexer.NUMBER, lexer.nextToken());
assertEquals("34.67", lexer.getText());
assertEquals(Lexer.NUMBER, lexer.nextToken());
assertEquals("16", lexer.getText());
assertEquals(Lexer.BAD_TOKEN, lexer.nextToken());
assertEquals("!", lexer.getText());
}
@Test
void lexerExtraWhiteSpaceTest() {
InputStream input = new ByteArrayInputStream(" y = 17.5 + 34 * ".getBytes(StandardCharsets.UTF_8));
Lexer lexer = new Lexer(input);
assertEquals(Lexer.VARIABLE, lexer.nextToken());
assertEquals("y", lexer.getText());
assertEquals(Lexer.ASSIGN_OP, lexer.nextToken());
assertEquals("=", lexer.getText());
assertEquals(Lexer.NUMBER, lexer.nextToken());
assertEquals("17.5", lexer.getText());
assertEquals(Lexer.ADD_OP, lexer.nextToken());
assertEquals("+", lexer.getText());
assertEquals(Lexer.NUMBER, lexer.nextToken());
assertEquals("34", lexer.getText());
assertEquals(Lexer.MULTIPLY_OP, lexer.nextToken());
assertEquals("*", lexer.getText());
}
@Test
void lexerNoWhiteSpaceTest() {
InputStream input = new ByteArrayInputStream("10+17=!13x78y*\n".getBytes(StandardCharsets.UTF_8));
Lexer lexer = new Lexer(input);
assertEquals(Lexer.NUMBER, lexer.nextToken());
assertEquals("10", lexer.getText());
assertEquals(Lexer.ADD_OP, lexer.nextToken());
assertEquals("+", lexer.getText());
assertEquals(Lexer.NUMBER, lexer.nextToken());
assertEquals("17", lexer.getText());
assertEquals(Lexer.ASSIGN_OP, lexer.nextToken());
assertEquals("=", lexer.getText());
assertEquals(Lexer.BAD_TOKEN, lexer.nextToken());
assertEquals("!", lexer.getText());
assertEquals(Lexer.NUMBER, lexer.nextToken());
assertEquals("13", lexer.getText());
assertEquals(Lexer.VARIABLE, lexer.nextToken());
assertEquals("x78y", lexer.getText());
assertEquals(Lexer.MULTIPLY_OP, lexer.nextToken());
assertEquals("*", lexer.getText());
assertEquals(Lexer.EOL, lexer.nextToken());
assertEquals("\n", lexer.getText());
}
@Test
void evaluatorSimpleExpressionTest() {
InputStream input = new ByteArrayInputStream("10 10 *\n".getBytes(StandardCharsets.UTF_8));
Evaluator eval = new Evaluator(new Lexer(input));
assertEquals(100, eval.evaluate());
}
}

158
Orbital-Bodies/Matrix.java Normal file
View File

@@ -0,0 +1,158 @@
/**
* A simple m x n matrix class.
*
* TODO All of the methods currently just return default values. You need to make them match the Javadoc comments.
*
* @author YOUR NAME HERE
* @version Sept. 2017
*/
public class Matrix {
private int m, n;
private double[][] M;
public Matrix(double[][] array) {
M = array;
m = array.length;
n = array[0].length;
}
/**
* @return The number of columns in the matrix.
*/
public int nCols() { return n; }
/**
* @return the number of rows.
*/
public int nRows() { return m; }
/**
* @param i
* @param j
* @return The entry at row i column j.
*/
public double entry(int i, int j) {
return M[i][j];
}
/**
* Computes the dot product of this matrix with the parameter that. (Return value is this . that)
* Recall that the dot product is the typical matrix multiplication.
* @param that The matrix to apply this matrix to.
* @throws BadDimensionException If this.nCols() != that.nRows() because the dot product is not defined
* @return The dot product of this matrix with that.
*/
public Matrix dot(Matrix that) throws UndefinedMatrixOpException {
if (this.nCols() != that.nRows()) {
throw new UndefinedMatrixOpException("Dot product not defined", this, that);
}
double[][] result = new double[this.nRows()][that.nCols()];
for (int i = 0; i < result.length; i++) {
for (int j = 0; j < result[i].length; j++) {
double entry = 0;
for (int k = 0; k < this.nCols(); k++) {
entry += this.entry(i, k) * that.entry(k, j);
}
result[i][j] = entry;
}
}
return new Matrix(result);
}
/**
* Add this matrix to that and returns the result. (Return value is this + that)
* @param that the matrix to add this matrix to.
* @throws BadDimensionException If the dimension of the two matrices are not identical.
* @return The sum of the this and that.
*/
public Matrix plus(Matrix that) throws UndefinedMatrixOpException {
if (this.nRows() != that.nRows() || this.nCols() != this.nRows()) {
throw new UndefinedMatrixOpException("Matrix dimensions are not identical", this, that);
}
double[][] result = new double[this.nRows()][this.nCols()];
for (int i = 0; i < result.length; i++) {
for (int j = 0; j < result[i].length; j++) {
result[i][j] = this.entry(i, j) + that.entry(i, j);
}
}
return new Matrix(result);
}
/**
* @param theta The rotation angle.
* @return The homogeneous rotation matrix for a given value for theta.
*/
public static Matrix rotationH2D(double theta) {
double[][] R = {{Math.cos(theta), -Math.sin(theta), 0}, {Math.sin(theta), Math.cos(theta), 0}, {0, 0, 1}};
return new Matrix(R);
}
/**
* @param tx The amount to translate in the x direction.
* @param ty The amount to translate in the y direction.
* @return The matrix representing a translation of tx, ty.
*/
public static Matrix translationH2D(double tx, double ty) {
double[][] T = {{1, 0, tx}, {0, 1, ty}, {0, 0, 1}};
return new Matrix(T);
}
/**
* @param x The x coordinate
* @param y The y coordinate
* @return The column matrix representing in homogeneous coordinates the point (x, y).
*/
public static Matrix vectorH2D(double x, double y) {
double[][] V = {{x}, {y}, {1}};
return new Matrix(V);
}
/**
* @param n The dimension of the matrix. Recall that the identity matrix has 1's for any entry that is in the same row index as its column index, 0's everywhere else.
* @return the nxn identity matrix
*/
public static Matrix identity(int n) {
return identity(n, n);
}
/**
* Computes the mxn identity matrix which has 1's for every entry at the same row and column index and
* 0 for all other entries.
* @param m
* @param n
* @return the mxn identity matrix.
*/
public static Matrix identity(int m, int n) {
double[][] result = new double[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
result[i][j] = (i == j) ? 1 : 0;
}
}
return new Matrix(result);
}
/**
* A little helpful toString() in case you want to print your matrix to System.out
*/
public String toString() {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
sb.append(M[i][j]);
sb.append('\t');
}
sb.append('\n');
}
return sb.toString();
}
}

141
Orbital-Bodies/Orbit.pde Normal file
View File

@@ -0,0 +1,141 @@
import java.util.*;
import java.awt.*;
Orbiter sun; // The root orbiter
int lastMillis;
double[][] originM = {{0},{0},{1}};
Matrix origin = new Matrix(originM);
// A few fun parameters
boolean clearBackground = true;
double speedModifier = 1.0; // Set in some of the scenes to change the speed.
// One default scene (selected in the setup() function
void setupScene1() {
sun = new Orbiter(null, 0, 0, 0, Orbiter.Type.CIRCLE, Color.yellow);
Orbiter earth = new Orbiter(sun, 50, 0, 1, Orbiter.Type.CIRCLE, Color.blue);
Orbiter moon = new Orbiter(earth, 30, 0, 1, Orbiter.Type.CIRCLE, Color.gray);
Orbiter moonSatellite = new Orbiter(moon, 20, 0, 1, Orbiter.Type.CIRCLE, Color.gray);
Orbiter jupiter = new Orbiter(sun, 200, 0, 0.5, Orbiter.Type.CIRCLE, Color.red);
Orbiter jupiterMoon = new Orbiter(jupiter, 75, 0, 2, Orbiter.Type.CIRCLE, Color.green);
Orbiter jupiterExplorer = new Orbiter(jupiterMoon, 40, 0, -1, Orbiter.Type.SQUARE, Color.orange);
Orbiter jupiterExplorerRobot = new Orbiter(jupiterExplorer, 20, 0, -3, Orbiter.Type.TRIANGLE, Color.magenta);
}
// A second default scene
void setupScene2() {
speedModifier = 0.25;
sun = new Orbiter(null, 0, 0, 0, Orbiter.Type.TRIANGLE, Color.yellow);
Orbiter earth = new Orbiter(sun, 50, 0, 10, Orbiter.Type.TRIANGLE, Color.blue);
Orbiter moon = new Orbiter(earth, 30, 0, 20, Orbiter.Type.TRIANGLE, Color.gray);
Orbiter moonSatellite = new Orbiter(moon, 20, 0, 30, Orbiter.Type.TRIANGLE, Color.gray);
Orbiter jupiter = new Orbiter(sun, 200, 0, 5, Orbiter.Type.TRIANGLE, Color.red);
Orbiter jupiterMoon = new Orbiter(jupiter, 75, 0, 2, Orbiter.Type.TRIANGLE, Color.green);
Orbiter jupiterExplorer = new Orbiter(jupiterMoon, 40, 0, 8, Orbiter.Type.TRIANGLE, Color.orange);
Orbiter jupiterExplorerRobot = new Orbiter(jupiterExplorer, 20, 0, -6, Orbiter.Type.TRIANGLE, Color.magenta);
}
// The setup. You don't need to edit this other than to switch scenes by commenting out
// the setupScene1() and uncommenting setupScene2().
void setup() {
size(800, 800);
background(0);
setupScene1();
//setupScene2(); // Run this one with clearBackground set to false
lastMillis = millis();
}
// The draw function
// DO NOT EDIT
void draw() {
if (clearBackground) background(0); // Make the background black.
int currentMillis = millis(); // Get the current number of milliseconds
int elapsedMillis = currentMillis - lastMillis; // Get the number of milliseconds elapsed since last call
double timeDelta = elapsedMillis / 1000.0;
updateOrbiters(timeDelta * speedModifier);
pushMatrix();
scale(1, -1);
translate(width / 2, - height / 2);
drawOrbiters();
popMatrix();
lastMillis = currentMillis;
}
void updateOrbiters(double timeDelta) {
Queue<Orbiter> queue = new LinkedList<Orbiter>();
queue.add(sun);
while (!queue.isEmpty()) {
Orbiter node = queue.remove();
node.updateRotation(timeDelta);
queue.addAll(node.getChildren());
}
// TODO
// This code should traverse the orbiters (in BFS or DFS, but I used BFS)
// order using a stack or a queue (your choice), and call updateRotation
// on each one using the timeDelta parameter.
//
// Recall that Java has a Queue<T> data type and a Stack<T> interface
}
void drawOrbiters() {
Queue<Orbiter> queue = new LinkedList<Orbiter>();
queue.add(sun);
while (!queue.isEmpty()) {
Orbiter node = queue.remove();
drawOrbiter(node);
queue.addAll(node.getChildren());
}
// TODO
// This code should traverse the orbiters (in BFS or DFS order, i used BFS)
// and call drawOrbiter on each orbiter.
}
// The code for drawing an orbiter. This is called from your drawOrbiters() method
// but you should not have to edit it.
void drawOrbiter(Orbiter orbiter) {
try {
Matrix position = orbiter.getMatrix().dot(origin);
int px = (int) Math.round(position.entry(0,0) / position.entry(2,0));
int py = (int) Math.round(position.entry(1,0) / position.entry(2,0));
// Draw the orbiter
noStroke();
fill(orbiter.getFillColor().getRed(), orbiter.getFillColor().getGreen(), orbiter.getFillColor().getBlue());
switch (orbiter.getType()) {
case CIRCLE:
ellipse(px, py, 16, 16);
break;
case SQUARE:
rect(px-4, py-4, 8, 8);
break;
case TRIANGLE:
triangle(px, py+3, px-2, py-1, px+2, py-1);
break;
}
noFill();
// Draw the orbit path
if (clearBackground) {
stroke(60);
for (Orbiter child : orbiter.getChildren()) {
int radius = (int) (2*child.getOrbitRadius());
ellipse(px, py, radius, radius);
}
}
} catch (UndefinedMatrixOpException umoe) {
}
}

View File

@@ -0,0 +1,69 @@
import java.awt.Color;
import java.util.*;
/**
* An Orbiter is an object that orbits some other object, called its parent.
* The center of an orbital system is an Orbiter with no parent.
* Each Orbiter may have child Oribters that orbit it.
*
* An Orbiter stores its orbital radius and current orbit angle.
*/
public class Orbiter {
public enum Type {
CIRCLE, SQUARE, TRIANGLE
}
private final double orbitRadius;
private final Type type;
private final Color fillColor;
private double orbitAngle;
private double orbitSpeed;
private final List<Orbiter> children = new LinkedList<Orbiter>();
private final Orbiter parent;
public Orbiter(Orbiter parent, double orbitRadius, double orbitAngle, double orbitSpeed, Type type, Color fillColor) {
this.orbitRadius = orbitRadius;
this.orbitAngle = orbitAngle;
this.type = type;
this.fillColor = fillColor;
this.parent = parent;
this.orbitSpeed = orbitSpeed;
if (parent != null) parent.children.add(this);
}
public double getOrbitRadius() { return orbitRadius; }
public double getOrbitAngle() { return orbitAngle; }
public Color getFillColor() { return fillColor; }
public Type getType() { return type; }
public Orbiter getParent() { return parent; }
public List<Orbiter> getChildren() { return children; }
/**
* Updates the rotation of this orbiter by the amount specified in the deltaAngle parameter.
* @param deltaAngle The amount of rotation angle to add the to the current rotation.
*/
public void updateRotation(double timeDelta) {
orbitAngle += (timeDelta * orbitSpeed);
}
public Matrix getMatrix() throws UndefinedMatrixOpException {
if (parent == null) {
return Matrix.identity(3);
}
Matrix local = Matrix.rotationH2D(orbitAngle).dot(Matrix.translationH2D(orbitRadius, 0));
return this.parent.getMatrix().dot(local);
// TODO
// If this is the root node, then return the 3x3 identity matrix
// If this is not the root node, should return the transformation
// matrix for this orbiter (see the writeup for an idea of how to
// do this). Make sure you've coded the Matrix class first.
}
}

View File

@@ -0,0 +1,14 @@
/**
* Thrown when a matrix oepration is applied to matrices of the wrong size.
*
* You don't need to edit this.
*/
public class UndefinedMatrixOpException extends Exception {
public UndefinedMatrixOpException(String message, Matrix m1, Matrix m2) {
super(message + "\nMatrix 1: " + m1 + "\n\nMatrix 2: " + m2);
}
}

3
README.md Normal file
View File

@@ -0,0 +1,3 @@
# CS327-Discrete-Structures-II
A collection of my projects from JMU's CS327: Discrete Structures II course.